If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-16p-50=0
a = 1; b = -16; c = -50;
Δ = b2-4ac
Δ = -162-4·1·(-50)
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{114}}{2*1}=\frac{16-2\sqrt{114}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{114}}{2*1}=\frac{16+2\sqrt{114}}{2} $
| 9c=-18+12c | | 5+4x=6x+1 | | 3(x-8)=4-x | | -3q+19=-7q-20-17 | | 13(m-2=-4(11+m)+1 | | 5+x=3x-19 | | 3x+15=3x-5 | | 2/5x-2=-4 | | 5(x+1)^2=120 | | 6-n=21 | | 3a+15=6a-9 | | 2/3x+-7=11 | | -4+4k=4 | | 32=12u-4u | | -4-18n=-19-19n | | -10p=60 | | 3x+10=8+4x | | 3x/18=39 | | 5x-2+x+4+3x+1=57 | | 4x+10=22+2x | | -3+3d=18 | | g(-6)=(-6)²-6 | | -6+6q=4q+4 | | g(-6)=(-6)²-(-6) | | 3s=45s= | | -z+8=-10+z | | -4.8x+0.4=1.7 | | -3x=x^2-4x-6 | | -7h+5=-2-8h | | 4+-2d=0 | | -7h+5=-2−8h | | -7+6(7r-7)=-4r-3 |